Cloud Computing and Visualisation Category Banner Image

Building Batch Data Analytics Solutions on AWS

  • Length 1 day
Course overview
View dates &
book now
Course locations >>

Why study this course

In this course, you will learn to build batch data analytics solutions using Amazon EMR, an enterprise-grade Apache Spark and Apache Hadoop managed service. You will learn how Amazon EMR integrates with open-source projects such as Apache Hive, Hue, and HBase, and with AWS services such as AWS Glue and AWS Lake Formation.

The course addresses data collection, ingestion, cataloging, storage, and processing components in the context of Spark and Hadoop. You will learn to use EMR Notebooks to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon EMR.

Request Course Information


What you’ll learn

This course is designed to teach participants how to:

  • Compare the features and benefits of data warehouses, data lakes, and modern data architectures

  • Design and implement a batch data analytics solution

  • Identify and apply appropriate techniques, including compression, to optimise data storage

  • Select and deploy appropriate options to ingest, transform, and store data

  • Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case

  • Understand how data storage and processing affect the analysis and visualisation mechanisms needed to gain actionable business insights

  • Secure data at rest and in transit

  • Monitor analytics workloads to identify and remediate problems

  • Apply cost management best practices


AWS Partner Logo - Advanced Tier

AWS at Lumify Work

Lumify Work is an official AWS Training Partner for Australia, New Zealand, and the Philippines. Through our Authorised AWS Instructors, we can provide you with a learning path that’s relevant to you and your organisation, so you can get more out of the cloud. We offer virtual and face-to-face classroom-based training to help you build your cloud skills and enable you to achieve industry-recognised AWS Certification.


Who is the course for?

  • Data platform engineers

  • Architects and operators who build and manage data analytics pipelines


Course subjects

Module A: Overview of Data Analytics and the Data Pipeline

  • Data analytics use cases

  • Using the data pipeline for analytics

Module 1: Introduction to Amazon EMR

  • Using Amazon EMR in analytics solutions

  • Amazon EMR cluster architecture

  • Interactive Demo 1: Launching an Amazon EMR cluster

  • Cost management strategies

Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and Storage

  • Storage optimisation with Amazon EMR

  • Data ingestion techniques

Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR

  • Apache Spark on Amazon EMR use cases

  • Why Apache Spark on Amazon EMR

  • Spark concepts

  • Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the
    Spark shell

  • Transformation, processing, and analytics

  • Using notebooks with Amazon EMR

  • Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR

Module 4: Processing and Analysing Batch Data with Amazon EMR and Apache Hive

  • Using Amazon EMR with Hive to process batch data

  • Transformation, processing, and analytics

  • Practice Lab 2: Batch data processing using Amazon EMR with Hive

  • Introduction to Apache HBase on Amazon EMR

Module 5: Serverless Data Processing

  • Serverless data processing, transformation, and analytics

  • Using AWS Glue with Amazon EMR workloads

  • Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions

Module 6: Security and Monitoring of Amazon EMR Clusters

  • Securing EMR clusters

  • Interactive Demo 3: Client-side encryption with EMRFS

  • Monitoring and troubleshooting Amazon EMR clusters

  • Demo: Reviewing Apache Spark cluster history

Module 7: Designing Batch Data Analytics Solutions

  • Batch data analytics use cases

  • Activity: Designing a batch data analytics workflow

Module B: Developing Modern Data Architectures on AWS

  • Modern data architecture

Please note: This is an emerging technology course. Course outline is subject to change as needed.


Prerequisites

Students with a minimum one-year experience managing open-source data frameworks such as Apache Spark or Apache Hadoop will benefit from this course.

We suggest the AWS Hadoop Fundamentals course for those who need a refresher on Apache Hadoop.

We recommend that attendees of this course have:


Terms & Conditions

The supply of this course by Lumify Work is governed by the booking terms and conditions. Please read the terms and conditions carefully before enrolling in this course, as enrolment in the course is conditional on acceptance of these terms and conditions.


Request Course Information



Loading